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Non-Discrimination Policy  
The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the 
bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, 
familial or parental status, sexual orientation, or whether all or part of an individual’s income is derived from any public assistance program, or 
protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases 
will apply to all programs and/or employment activities.)  
To File an Employment Complaint  
If you wish to file an employment complaint, you must contact your agency’s EEO Counselor within 45 days of the date of the alleged 
discriminatory act, event, or personnel action. *Additional information can be found online at 
http://www.ascr.usda.gov/complaint_filing_file.html.  
To File a Program Complaint  
If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form, found online 
at http://www.ascr.usda.gov/complaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form. You may also write 
a letter containing all of the information requested in the form. Send your completed complaint form or letter to us by mail at U.S. Department 
of Agriculture, Director, Office of Adjudication, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, by fax (202) 690-7442 or email 
at program.intake@usda.gov.  
Persons with Disabilities  
Individuals who are deaf, hard of hearing or have speech disabilities and who wish to file either an EEO or program complaint please contact 
USDA through the Federal Relay Service at (800) 877-8339 or (800) 845-6136 (in Spanish).  
Persons with disabilities who wish to file a program complaint, please see information above on how to contact us by mail directly or by email. 
If you require alternative means of communication for program information (e.g., Braille, large print, audiotape, etc.) please contact USDA’s 
TARGET Center at (202) 720-2600 (voice and TDD).  
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Executive Summary 
The Landscape Change Monitoring System (LCMS) is a remote sensing-based system produced by the 

USDA Forest Service for mapping and monitoring changes related to vegetation canopy cover, as well as 

land cover and land use. Data produced by LCMS extend from 1985 to the most recently completed 

growing year. LCMS is intended to provide a consistent monitoring method for applications including, 

but not limited to, post-disturbance monitoring, broad-scale vegetation cover change, land cover and 

land use conversion trends monitoring, and sensitive habitat monitoring. 

This document details the methods employed to create all map products for LCMS version 2020.5. These 

methods will be revisited annually to ensure they reflect the best available science. Current methods 

involve utilizing Landsat and Sentinel 2 data in the Landsat-based detection of Trends in Disturbance and 

Recovery (LandTrendr) and Continuous Change Detection and Classification (CCDC) temporal 

segmentation algorithms. These data are used as predictor variables in random forest models that are 

calibrated using training data from TimeSync. The broad categories of LCMS products are vegetation 

cover change, land cover, and land use.  

All LCMS products are freely available for download at: 

https://data.fs.usda.gov/geodata/rastergateway/LCMS 

The data can be interactively visualized and summarized here: https://apps.fs.usda.gov/lcms-viewer 

Background 

Our landscape is continually changing. Monitoring change in vegetation cover and conversion of land 

cover and land use is important for making data-driven land management decisions. The USDA Forest 

Service has developed the Landscape Change Monitoring System (LCMS) to consistently monitor 

changes in vegetation cover, land cover, and land use across the United States from 1984 to present.  

The LCMS Science Team (https://www.fs.usda.gov/rmrs/groups/landscape-change-monitoring-system-

lcms-science-team) initially developed all LCMS methods (Healey et al. 2018; Cohen et al. 2018). This 

team evaluated the best available science about landscape change detection methods and provided 

guidance for the adapted operational LCMS methods employed by the LCMS Production Team described 

in this document.  

The Science Team and Production Team jointly re-evaluate the methods annually to ensure the mapping 

process is still based on the best available science. This document describes the methods used to create 

LCMS version 2020.5 products. The version naming convention is YYYY.v where “YYYY” denotes the most 

recent year mapped, and the “v” denotes the version of the methods used. We recreate all map 

products annually from 1985 to the most recent full growing season. Annual production ensures LCMS 

methods can be updated when appropriate and all maps will be produced in a consistent manner. 

LCMS mapping areas include all the United States and its territories. The first operational set of outputs, 

included in v2020.5, covers the conterminous United States (CONUS) and southeastern Alaska (SEAK). 

https://data.fs.usda.gov/geodata/rastergateway/LCMS
https://apps.fs.usda.gov/lcms-viewer
https://www.fs.usda.gov/rmrs/groups/landscape-change-monitoring-system-lcms-science-team
https://www.fs.usda.gov/rmrs/groups/landscape-change-monitoring-system-lcms-science-team
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Future mapping efforts will extend to Hawaii and Puerto Rico. This document outlines methods used 

over the CONUS and SEAK study areas. 

The core LCMS products are annual vegetation cover change, land cover, and land use raster maps. 

Vegetation cover change is broken into slow loss, fast loss, and gain. Change products are intended to 

address needs centered around monitoring variations in vegetation cover or water extent that may or 

may not result in a transition of land cover and/or land use. Land cover products can be used to meet 

more general land cover monitoring needs over time. Land use products can be used to monitor land 

use conversion patterns.   

Methods 

Computing platforms 
LCMS utilizes Google Earth Engine (GEE) (Gorelick 2017), through an enterprise agreement between the 

USDA Forest Service and Google, for all remote sensing raster data acquisition and processing. GEE is a 

parallel computing environment that provides access to many publicly available earth observation 

datasets, along with common data processing methods, and computing infrastructure to process these 

data. While GEE’s data processing methods are quite extensive, currently it cannot meet the breadth of 

methods available in common scientific computing platforms such as R and the Python package Scikit-

Learn (Pedregosa et al. 2011). Due to these limitations, we use Scikit-Learn for sample design, model 

predictor variable selection, and model validation. 

Model calibration data 
All supervised statistical models need a set of calibration data (dependent variable or training data), and 

predictor variables (independent variables) to train the model. The model is then applied to the 

predictor data where there are no calibration data. This section will outline how LCMS calibration data 

locations are selected and attributed. 

Model calibration data sample design 

The goal of a sample design is to efficiently sample the expected variability of the dependent variable. 

Since LCMS maps vegetation cover change, land cover, and land use, the sample design needs to 

account for expected variability in each of these categories across the US.  

Pilot projects we completed throughout the United States revealed that many of the classes, such as 

vegetation cover loss and impervious land cover, are relatively rare across the landscape. The simple 

random sample we initially used proved insufficient to capture an adequate proportion of these rare 

classes. To improve our sampling approach, we moved to a stratified random sample design following 

the guidance from Olofsson et al. 2014. Specifically, “The recommended allocation of sample size to the 

strata defined by the map classes is to increase the sample size for the rarer classes making the sample 

size per stratum more equitable than what would result from proportional allocation, but not pushing to 

the point of equal allocation.”   

Based on this guidance, the design first involves stratifying the landscape using the 2016 NLCD land 

cover / land use map, and LandTrendr (Kennedy et al. 2010; Kennedy et al. 2018) to identify loss areas. 

Final strata and their spatial extent are shown in Figure 1 for CONUS and Figure 2 for SEAK. 
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Figure 1 Map depicting strata used for the LCMS CONUS calibration/validation sample design. Final strata are listed below the 
map, with the percentage of total pixels represented by that stratum in parentheses and NLCD land cover classes included in 
that stratum listed below. 

 

Figure 2 Map depicting strata used for the LCMS SEAK calibration/validation sample design. Final strata are listed below the 
map, with the percentage of total pixels represented by that stratum in parentheses and NLCD land cover classes included in 
that stratum listed below. 
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We chose the strata shown in Table 1 and Table 2 in order to adequately sample rare classes that are of 

specific interest to LCMS applications and/or had high model error in LCMS pilot studies. This includes 

tree loss, deciduous tree loss in the western US, wetlands, and developed areas. Areas such as water 

and snow/ice typically have low model error, and therefore we allocated fewer samples to those classes.  

The final sample size is 10,010 across CONUS and 994 across SEAK. We start the final sample count with 

an allocation halfway between equal and proportional. We set a maximum value of 1000 and 200 for 

CONUS and SEAK respectively for each stratum. We then proportionally recursively allocate the 

remainder. Lastly, we set a fixed sample number of 30 for snow/ice and 200 (30 for SEAK) for water 

(because these are “easier”, less variable classes). We equally allocate the remaining samples across the 

three disturbance (loss) strata. Table 1 and Table 2 show the final sample counts by strata for CONUS 

and SEAK, respectively. 
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Table 1 Final sample counts by strata for the CONUS calibration sample. 

 

Table 2 Final sample counts by strata for the SEAK calibration sample. 

 

Calibration Data Collection 

We collected model calibration data using the TimeSync attribution tool (Cohen et al. 2010). TimeSync is 

a web-based application that allows users to look at a time series of Landsat images, along with available 

high-resolution images in Google Earth Pro and other ancillary data in the Ancillary Data Viewer web 

application (made at GTAC), to attribute yearly land cover, land use, and change process at each training 

point location (Figure 3).  
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Figure 3 Example of the TimeSync tool (top) and the Ancillary Data Viewer (bottom). These tools, along with Google Earth Pro, 
are used in unison to attribute change process, land cover, and land use for each year for each model calibration plot 

LCMS TimeSync interpretation utilizes the LCMAP/LCMS Joint Response Design. This response design 

provides a consistent method for attributing a common set of classes for change process, land cover, 

and land use (see supplementary materials in Pengra et al. 2020).  The classes and their definitions are 

as follows: 
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• Change process 

1. FIRE: Land altered by fire, regardless of the cause of the ignition (natural or 

anthropogenic), severity, or land use. 

2. HARVEST: Forest land where trees, shrubs or other vegetation have been severed or 

removed by anthropogenic means. Examples include clearcutting, salvage logging after 

fire or insect outbreaks, thinning and other forest management prescriptions (e.g. 

shelterwood/seedtree harvest). 

3. MECHANICAL: Non-forest land where trees, shrubs or other vegetation has been 

mechanically severed or removed by chaining, scraping, brush sawing, bulldozing, or any 

other methods of non-forest vegetation removal. 

4. STRUCTURAL DECLINE: Land where trees or other woody vegetation is physically altered 

by unfavorable growing conditions brought on by non-anthropogenic or non-mechanical 

factors. This type of loss should generally create a trend in the spectral signal(s) (e.g. 

NDVI decreasing, Wetness decreasing; SWIR increasing; etc.)., however the trend can be 

subtle. Structural decline occurs in woody vegetation environments, most likely from 

insects, disease, drought, acid rain, etc. Structural decline can include defoliation events 

that do not result in mortality such as in Gypsy moth and spruce budworm infestations 

which may recover within 1 or 2 years. 

5. SPECTRAL DECLINE: A plot where the spectral signal shows a trend in one or more of the 

spectral bands or indices (e.g. NDVI decreasing, Wetness decreasing; SWIR increasing; 

etc.). Examples include cases where: a) non-forest/non-woody vegetation shows a trend 

suggestive of decline (e.g. NDVI decreasing, Wetness decreasing; SWIR increasing; etc.), 

or b) where woody vegetation shows a decline trend which is not related to the loss of 

woody vegetation, such as when mature tree canopies close resulting in increased 

shadowing, when species composition changes from conifer to hardwood, or when a dry 

period (as opposed to stronger, more acute drought) causes an apparent decline in 

vigor, but no loss of woody material or leaf area. 

6. WIND/ICE: Land (regardless of use) where vegetation is altered by wind from hurricanes, 

tornados, storms and other severe weather events including freezing rain from ice 

storms. 

7. HYDROLOGY: Land where flooding has significantly altered woody cover or other land 

cover elements regardless of land use (e.g. new mixtures of gravel and vegetation in and 

around streambeds after a flood). 

8. DEBRIS: Land (regardless of use) altered by natural material movement associated with 

landslides, avalanches, volcanos, debris flows, etc. 

9. OTHER: Land (regardless of use) where the spectral trend or other supporting evidence 

suggests a disturbance or change event has occurred but the definitive cause cannot be 

determined or the type of change fails to meet any of the change process categories 

defined above. 

10. GROWTH/RECOVERY: Land exhibiting an increase in vegetation cover due to growth and 

succession over one or more years. Applicable to any areas that may express spectral 
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change associated with vegetation regrowth. In developed areas, growth can result 

from maturing vegetation and/or newly installed lawns and landscaping. In forests, 

growth includes vegetation growth from bare ground, as well as the over topping of 

intermediate and co-dominate trees and/or lower-lying grasses and shrubs. 

Growth/Recovery segments recorded following forest harvest will likely transition 

through different land cover classes as the forest regenerates. For these changes to be 

considered growth/recovery, spectral values should closely adhere to an increasing 

trend line (e.g. a positive slope that would, if extended to ~20 years, be on the order of 

.10 units of NDVI) which persists for several years. 

• Land cover 

1. TREES: Live or standing dead trees. 

2. TALL SHRUBS (SEAK only): Shrubs > 1m in height. 

3. SHRUBS: Shrubs. 

4. GRASS/FORB/HERBACEOUS: Perennial grasses, forbs, or other forms of herbaceous 

vegetation. 

5. BARREN OR IMPERVIOUS: 1) Bare soil exposed by disturbance (e.g., soil uncovered by 

mechanical clearing or forest harvest), as well as perennially barren areas such as 

deserts, playas, rock outcroppings (including minerals and other geologic materials 

exposed by surface mining activities), sand dunes, salt flats, and beaches. Roads made of 

dirt and gravel are also considered barren or 2) man-made materials that water cannot 

penetrate, such as paved roads, rooftops, and parking lots. 

6. SNOW/ICE: Snow and/or ice. 

7. WATER: Water. 

• Land use 

1. AGRICULTURE: Land used for the production of food, fiber and fuels which is in either a 
vegetated or non-vegetated state. This includes but is not limited to cultivated and 
uncultivated croplands, hay lands, orchards, vineyards, confined livestock operations, 
and areas planted for production of fruits, nuts or berries. Roads used primarily for 
agricultural use (i.e. not used for public transport from town to town) are considered 
agriculture land use. 

2. DEVELOPED:  Land covered by man-made structures (e.g. high density residential, 
commercial, industrial, mining or transportation), or a mixture of both vegetation 
(including trees) and structures (e.g., low density residential, lawns, recreational 
facilities, cemeteries, transportation and utility corridors, etc.), including any land 
functionally altered by human activity. 

3. FOREST: Land that is planted or naturally vegetated and which contains (or is likely to 
contain) 10% or greater tree cover at some time during a near-term successional 
sequence. This may include deciduous, evergreen and/or mixed categories of natural 
forest, forest plantations, and woody wetlands. 

4. NON-FOREST WETLAND: Lands adjacent to or within a visible water table (either 
permanently or seasonally saturated) dominated by shrubs or persistent emergents. 
These wetlands may be situated shoreward of lakes, river channels, or estuaries; on 
river floodplains; in isolated catchments; or on slopes. They may also occur as prairie 
potholes, drainage ditches and stock ponds in agricultural landscapes and may also 
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appear as islands in the middle of lakes or rivers. Other examples also include marshes, 
bogs, swamps, quagmires, muskegs, sloughs, fens, and bayous. 

5. OTHER: Lands which are perennially covered with snow and ice, water, salt flats and 
other undeclared classes. Glaciers and ice sheets or places where snow and ice obscure 
any other land cover call areincluded (assumed is the presence of permanent snow and 
ice). Water includes rivers, streams, canals, ponds, lakes, reservoirs, bays, or oceans. 
This assumes permanent water (which can be in some state of flux due to ephemeral 
changes brought on by climate or anthropogenic). 

6. RANGELAND/PASTURE: This class includes any area that is either a.) Rangeland, where 
vegetation is a mix of native grasses, shrubs, forbs and grass-like plants largely arising 
from natural factors and processes such as rainfall, temperature, elevation and fire, 
although limited management may include prescribed burning as well as grazing by 
domestic and wild herbivores; or b.) Pasture, where vegetation may range from mixed, 
largely natural grasses, forbs and herbs to more managed vegetation dominated by 
grass species that have been seeded and managed to maintain near monoculture. 

 

Calibration Data Finalization 

Since the classes listed above can be too detailed to model with remote sensing data, we bin (cross-

walk) them into larger classes appropriate for LCMS’ modeling methods. Change processes are cross-

walked into 3 final classes: 

• Slow Loss 

o Structural decline 

o Spectral decline 

• Fast Loss 

o Fire  

o Harvest 

o Mechanical 

o Wind/ice 

o Hydrology 

o Debris 

o Other 

• Gain 

o Growth/recovery 

Land cover requires a different cross-walking approach. All TimeSync plots have a primary land cover 

class that makes up the majority of the plot. Any additional land cover class that comprises 10% or more 

of the plot is assigned as a secondary land cover class. Since a plot may have any number of secondary 

land cover classes, primary/secondary combinations of interest are modeled separately. We include any 

primary/secondary combination that is common along typical succession, focusing on pairings with a 

secondary class that is higher along the successional order. The expected land cover successional order 

is barren --> grass/forb/herb --> shrub --> tree. With this in in mind, the primary/secondary land cover 

combinations we model in LCMS are shown in Table 3. 
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Table 3 List of primary and secondary land cover classes modeled in LCMS. Successional classes are grouped and highlighted 
with bold font. 

Primary Secondary 

Trees NA 

Tall Shrubs  Trees 

Shrubs Trees 

Grass/forb/herb Trees 

Barren Trees 

  

Tall Shrubs NA 

  

Shrubs NA 

Grass/forb/herb Shrubs 

Barren Shrubs 

  

Grass/forb/herb NA 

Barren Grass/forb/herb 

  

Barren or 
Impervious 

NA 

 

• The snow ice, or water  classes are not modeled with any secondary land cover classes since 

they are not likely to be part of vegetation succession. Snow or ice 

We take the land use classes directly from the TimeSync plots: 

o Agriculture 

o Developed 

o Forest 

o Non-forest wetland 

o Other 

o Rangeland or pasture 

 

Model predictor data 
We use spectral information from Landsat and Sentinel 2 imagery and topographic information from the 

USGS National Elevation Dataset (NED) for modeling. Descriptions of each of these datasets are 

provided below. 

Remote sensing spectral data 

Data preparation 

LCMS uses USGS Tier 1 Landsat 4, 5, 7, and 8 and Sentinel 2a and 2b level 1C top of atmosphere 

reflectance data. We do not use surface reflectance data because the Sentinel 2 surface reflectance data 
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available within GEE are terrain-corrected. This makes it difficult to utilize in unison with Landsat surface 

reflectance data that are not terrain-corrected. 

For cloud masking Landsat data, we apply the CFmask cloud masking algorithm (Foga et al. 2017), which 

is an implementation of Fmask 2.0 (Zhu and Woodcock 2012), as well as the cloudScore algorithm 

(Chastain et al. 2019). For cloud masking Sentinel 2 data, we utilize the s2Cloudless 

(https://github.com/sentinel-hub/sentinel2-cloud-detector) algorithm. We mask cloud shadows in both 

Landsat and Sentinel 2 using the Temporal Dark Outlier Mask (TDOM) method (Chastain et al. 2019). All 

remote sensing data preparation procedures can be accessed in the GTAC GEE data processing and 

visualization library (https://pypi.org/project/geeViz/, https://github.com/gee-community/geeViz).  

Annual compositing 

LCMS utilizes cloud/cloud shadow masked data as well as annual composites of these data to meet the 

needs of the temporal segmentation methods. Annual composite values are the geometric medoid of all 

values not masked as cloud or cloud shadow from a specified date range for each year. Due to 

differences in data availability and seasonality, we vary the date range across different modeling regions 

and time (Table 4).  

Table 4 Dates used for annual compositing of Landsat and Sentinel 2 data. 

Study Area Pre Sentinel 2 
Start Date 

Pre Sentinel 2 
End Date 

Post Sentinel 
2 Start Date 

Post Sentinel 
2 End Date 

CONUS June 1 September 30 July 1 September 1 

SEAK June 15 September 15 June 15 September 15 

 

The geometric medoid is the value that minimizes the sum of the square difference between the median 

value of each band’s values. This ensures that the center-most value in a multi-dimensional feature 

space is chosen. The value from all bands is from the same observation date. The bands that we include 

in the feature space are green, red, NIR, SWIR1, and SWIR2. We omit blue because it is more prone to 

atmospheric scattering and can inappropriately influence the medoid algorithm. Any pixel that does not 

have a cloud or cloud shadow free value for a given year is left as NULL and excluded from any map for 

that year. The 2020 composite images for CONUS and SEAK are shown in Figure 4 as an example.  

https://github.com/sentinel-hub/sentinel2-cloud-detector
https://pypi.org/project/geeViz/
https://github.com/gee-community/geeViz
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Figure 4 Example of the 2020 composites used in LCMS. The red, green, and blue channels are the SWIR2, NIR, and red bands 
respectively. The top image shows both SEAK and CONUS. The middle image shows a portion of coastal AK, while the bottom 
image shows a zoomed in view over Telluride, CO.  

Temporal segmentation 

The goal of temporal segmentation is to identify periods of time that likely have similar land cover 

and/or change processes. Since different segmentation methods have advantages and disadvantages, 

LCMS utilizes the ensemble approach outlined in Cohen et al. 2018 and Healey et al. 2018. Currently, the 

operational version of LCMS utilizes LandTrendr (Kennedy et al. 2010; Kennedy et al. 2018) and CCDC 

(Zhu and Woodcock 2014) to segment the prepared time series of Landsat and Sentinel 2 data. 

LandTrendr requires a maximum of one observation per year (i.e., an annual composite), while CCDC 

utilizes every available cloud and cloud shadow-free observation.  

LandTrendr Methods 

LandTrendr iteratively breaks the time series of annual composites and returns a set of segments. Each 

segment has a start and end year and a start and end fitted value at the start and end vertices 

respectively (Figure 5).  
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Figure 5 Illustration from https://emapr.github.io/LT-GEE/ depicting how LandTrendr breaks a time series and the information 
that can be taken from the output. 

From this information, we assign each band/index for each year the following values: 

• Fitted value 

• Difference of that year’s fitted value from the fitted value of the start vertex 

• Difference from the start to end fitted value of the segment that year falls in 

• The duration of the segment that year falls in 

• The slope of the segment that years falls in 

LCMS uses the GEE version of LandTrendr outlined in Kennedy et al. 2018. The parameters that are used 

are the same as those in Kennedy et al. 2018 (Table 5). 

Table 5 LandTrendr parameters used 

Parameter Name Value Description 
maxSegments 6 Maximum number of segments 

to be fitted on the time series. 
spikeThreshold 0.9 Threshold for dampening the 

spikes (1.0 means no 
dampening). 

vertexCountOvershoot 3 The initial model can 
overshoot the maxSegments + 
1 vertices by this amount. 

https://emapr.github.io/LT-GEE/
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Further documentation of the LandTrendr method used can be found here: 

https://developers.google.com/earth-engine/apidocs/ee-algorithms-temporalsegmentation-landtrendr 

CCDC Methods 

CCDC segments the time series by identifying outliers from a harmonic regression model. The idea is 

that different land covers and/or land uses have different seasonality signatures. A departure from the 

seasonality signature indicates a change (Figure 6).  

 

Figure 6 An example of how CCDC segments a time series of data. The clear observations for band 5 (SWIR1 for LCMS) are 
shown as dots, while the modeled value is shown as a blue line. Notice the dots depart from the typical values around 2008. 
CCDC then starts a new model following this departure when a new consistent seasonal pattern is re-established. (Source: Zhu 
and Woodcock 2014 figure 21)  

Input data include all Landsat cloud and cloud shadow-free values. LCMS uses all cosine and sine 

coefficients from the first 3 harmonics (2π, 4π, and 6π) (see Zhu and Woodcock 2014) from the CCDC 

outputs. We do not use the slope and intercept generated by CCDC. Instead, we use the predicted value 

based on the harmonic model on September 1 in place of the intercept (Figure 7), and the difference 

Later, it will be pruned down to 
maxSegments + 1. 

preventOneYearRecovery true Prevent segments that 
represent one year recoveries. 

recoveryThreshold 0.25 If a segment has a recovery 
rate faster than 
1/recoveryThreshold (in 
years), then the segment is 
disallowed. 

pvalThreshold 0.05 If the p-value of the fitted 
model exceeds this threshold, 
then the current model is 
discarded and another one is 
fitted using the Levenberg-
Marquardt optimizer. 

bestModelProportion 1.25 Takes the model with most 
vertices that has a p-value that 
is at most this proportion away 
from the model with lowest p-
value. 

https://developers.google.com/earth-engine/apidocs/ee-algorithms-temporalsegmentation-landtrendr
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between that year and the previous year’s fitted values as the slope. This allows for CCDC to work 

properly within the LCMS annual ensemble framework.  

The GEE version of CCDC is used for LCMS. The parameters used are: 

Table 6 CCDC parameters used 

Parameter Name Value Description 
breakpointBands ["green","red","nir

","swir1","swir2","

NDVI"] 

The name or index of the bands to use for change 
detection. If unspecified, all bands are used. 

tmaskBands null The name or index of the bands to use for iterative 
TMask cloud detection. These are typically the 
green band and the SWIR2 band. If unspecified, 
TMask is not used. If specified, 'tmaskBands' must 
be included in 'breakpointBands'. 

minObservations 6 The number of observations required to flag a 
change. 

chiSquareProbability 0.99 The chi-square probability threshold for change 
detection in the range of [0, 1] 

minNumOfYearsScaler 1.33 Factors of minimum number of years to apply new 
fitting. 

dateFormat 1 The time representation to use during fitting: 0 = 
jDays, 1 = fractional years, 2 = unix time in 
milliseconds. The start, end and break times for 
each temporal segment will be encoded this way. 

lambda 0.002 Lambda for LASSO regression fitting. If set to 0, 
regular OLS is used instead of LASSO. 

maxIterations 25000 Maximum number of runs for LASSO regression 

convergence. If set to 0, regular OLS is used 

instead of LASSO. 

 

Further documentation of the methods used can be found here: 

https://developers.google.com/earth-engine/apidocs/ee-algorithms-temporalsegmentation-ccdc 

Summary 

Visualizing how the medoid composites and fitted LandTrendr and CCDC values relate can be quite 

difficult. Figure 7 attempts to illustrate how these relate for two example pixels. The pixel depicted in 

the left column shows a fire event, while the right column shows insect-related tree mortality.  

The first row shows the time series of the medoid composite values. Notice how each band relates to 

the other during the change events. The middle row shows the normalized burn ratio (NBR) (a 

vegetation index related to moisture levels) fitted CCDC output, along with the annualized CCDC value 

from September 1 for each year. Notice how CCDC finds a break for the fire example, but shows a single 

long-term declining trend of NBR for the insect-related mortality. The bottom row shows the annual 

values of NBR from the medoid composites, LandTrendr, and CCDC. This illustrates how all three directly 

relate to each other. Each is different, but not necessarily right or wrong. Both LandTrendr and CCDC 

https://developers.google.com/earth-engine/apidocs/ee-algorithms-temporalsegmentation-ccdc
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reduce inter-annual noise, but identify breaks at different points in time. These are all used in the 

random forest model outlined below to produce final LCMS products. 

  

  

Figure 7 An example of predicted values from a pixel. The left column depicts a pixel with a fire event, while the right column 
depicts a pixel with insect-related tree mortality. The top row shows the raw spectral bands from the annual medoid composites. 
The second row shows the CCDC output for the NBR vegetation index, as well as the annualized values used in LCMS. The bottom 
row shows the raw NBR, LandTrendr fitted NBR, and CCDC fitted NBR on a single graph. This illustrates how these data 
complement each other as well as how they differ. 

Terrain data 

LCMS also uses terrain metrics to provide elevation, slope, aspect, and slope-position information to the 

model. The specific variables that are used are: 

• Elevation 

• Sine(Aspect) 

• Cosine(Aspect) 

• Slope 

• Slope-position (circular kernel with 11 pixel window, 21 pixel window, and 41 pixel window) 
(Weiss 2001) 
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For CONUS, the 10m NED (Gesch et al. 2009; https://developers.google.com/earth-
engine/datasets/catalog/USGS_NED) was used, and for SEAK, the 30m NED was used. All resampling 
was performed using cubic convolution.  

 

Summary 

All variables covered in this section are utilized in the methods outlined below. Table 7 shows a full list 

of all predictor variables considered for modeling. 

 

 

Table 7 List of LCMS model predictor variables. Annual values are different for each year of the analysis period, while the single 
value terrain variables remain constant.  

Modeling (Supervised Classifications) 
All supervised classifications for LCMS utilize the random forest modeling method (Breiman 2001). 

Random forest randomly selects a subset of the predictor variables and training sites in many different 

classification and regression trees. The class from each of the trees can then be used to determine the 

final modeled class.  

LCMS utilizes the GEE instance of random forests called “smileRandomForest” for all raster-based 

classification. Local processing that is utilized for variable selection and map validation uses the 

sklearn.ensemble.RandomForestClassifier method. 

LCMS uses a separate random forest model for each of the following products: 

• Change 

o Slow Loss 

o Fast Loss 

Composites Terrain

Raw

LANDT

RENDR 

Fitted

LANDTR

ENDR 

Diff

LANDT

RENDR 

Dur

LANDT

RENDR 

Mag

LANDT

RENDR 

Slope

CCDC 

Fitted

CCDC 

Fitted 

Slope

CCDC 

COS 1

CCDC 

COS 2

CCDC 

COS 3

CCDC 

SIN 1

CCDC 

SIN 2

CCDC 

SIN 3 Raw

blue ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

green ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

red ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

nir ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

swir1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

swir2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

NDVI ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

NBR ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

NDMI ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

NDSI ✔ ✔ ✔ ✔ ✔ ✔

brightness ✔ ✔ ✔ ✔ ✔ ✔

greenness ✔ ✔ ✔ ✔ ✔ ✔

wetness ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

brightness / 

greenness angle
✔ ✔ ✔ ✔ ✔ ✔

Elevation ✔

Slope ✔

cos(Aspect) ✔

sin(Aspect) ✔

TPI (11 pixel) ✔

TPI (21 pixel) ✔

TPI (41 pixel) ✔

Te
rr
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Si
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e 

V
al

u
e

In
d
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es

LANDTRENDR CCDC

Ta
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https://developers.google.com/earth-engine/datasets/catalog/USGS_NED
https://developers.google.com/earth-engine/datasets/catalog/USGS_NED
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o Gain 

• Land cover 

o Trees 

o Tall Shrubs & Trees Mix (SEAK only) 

o Shrubs & Trees Mix 

o Grass/Forb/Herb & Trees Mix 

o Barren & Trees Mix 

o Tall Shrubs (SEAK only) 

o Shrubs 

o Grass/Forb/ & Shrubs Mix 

o Barren & Shrubs Mix 

o Grass/Forb/Herb 

o Barren & Grass/Forb/Herb Mix 

o Barren or impervious 

o Snow or ice 

o Water 

• Land use 

o Agriculture 

o Developed 

o Forest 

o Non-forest wetland 

o Other 

o Rangeland or pasture 

 

Each of these products has an annual model output that is the proportion of trees within the random 

forest model that chose that class. For example, if the fast loss random forest model had a total of 100 

classification trees in it, and 45 of those trees chose “fast loss” and 65 chose “not fast loss” in 2005, that 

pixel would have a value of 0.45 in 2005. This model confidence, which can also be thought of as a 

probability, can have values between 0 and 1 and is available for each model for each year from 1985 to 

the most recent complete growing season. Figure 8 illustrates this concept in more detail. 

Predictor variable selection 

To reduce predictor variable co-variation and inclusion of variables that do not improve the model, we 

filter predictor variables in a two-step process. The first step involves filtering out any predictor pairs 

that have an r-squared greater than 0.95 (https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.DataFrame.corr.html). The variable with the lowest mean r-squared 

across all pairs is retained. The next step is a recursive feature elimination using a 5-fold grouped cross 

validation (sklearn.feature_selection.RFECV). We retain the variable combination with the highest 

accuracy for land use and land cover or highest ROC_AUC (Area Under the Receiver Operating 

Characteristic Curve) score for change. 
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Model validation 
We determine an optimum model confidence threshold by assessing the precision and recall at every 

possible threshold (from 0-100) and selecting the threshold that maximizes both precision and recall. 

We then use this threshold in a stratified 5-fold cross validation following Stehman 2014 for each 

change, land cover, and land use model. We use the stratified random sample of 30mx30m plot 

locations as the sample, and group training points by plot id so that all training points from the same 

plot (but that occurred in different years) are always included in the same fold. 

Final output creation 
As explained above, each class within the change, land cover, and land use products has a model 

confidence score, which represents the proportion of trees within the random forest model that 

classified a given pixel as that class for that model. Some examples of model confidence time series from 

individual pixels are shown in Figure 8. For each year, the line with the highest confidence is the class 

that is chosen for the given LCMS product (change, land cover, and land use). For change classes, the 

line with the highest confidence must also have a value above that model’s threshold. This is done 

because the “Stable” class is not modeled explicitly. 

In Figure 8, the pixel time series shown in the left column has been affected by a fire, while the pixel 

shown in the right column depicts long-term tree mortality from insects. The first, second, and third 

rows show the change, land cover, and land use time series, respectively. 

Beginning with the fire example, the change time series (first row, left column) shows that the fast loss 

model confidence peaks in the year of the fire (2012), to a value that exceeds the fast loss threshold of 

0.29. In the years following the fire (2013-2020), the gain model confidence rises to levels above the 

gain threshold of 0.29, as one might expect with growth and recovery following a fire. Complementing 

the change time series, the land cover time series (second row, left column) shows that the tree class 

had a very high model confidence for each year until the fire in 2012. Following the fire, the tree model 

confidence goes down, but it remains the most confident class. This often occurs when the trees are 

damaged or not all burned, but the understory burns. In the following years, we see the probability of 

grass/forb/herb & trees mix increase, most likely indicating that there are live trees in this pixel with 

grasses becoming more and more prevalent. Since a fire generally does not indicate a land use 

transition, the land use forest model’s confidence dips (third row, left column), but remains the highest.  

The time series of long-term tree mortality caused by beetles (right column), is quite different. In this 

case, the slow loss model confidence is elevated for about two decades (first row, right column). While 

the gain model confidence is elevated slightly during the second decade of this trend, the slow loss 

model remains the highest. Although there was indeed slow loss at this pixel, there was no transition of 

land cover or land use classes (second and third rows, right column). It is important to note that many 

instances of loss and gain do not result in a change of land cover or land use. 
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Figure 8 Time series of LCMS raw modeled probabilities for each year for a fire (left column) and tree mortality due to beetles 
(right column). The first, second, and third rows of this figure show the change, land cover, and land use time series, 
respectively. The map product assumes the class with the highest confidence for each year. Notice that it is possible to have a 
change event without a change in land cover or land use. 

 

LCMS products 
We package the final LCMS deliverables in two ways: annual and summarized layers. For each product 

(change, land cover, and land use) we assemble annual maps, as discussed above. We only provide 

summary products for change since only change products can easily be summarized. Beyond providing 

the mode for land cover and land use products, summarizing them is rather difficult.  

To summarize the change layers, we use two methods: most recent and most probable. The most recent 

method chooses the year of the respective change class that occurred most recently, while the most 

probable method chooses the year of the respective change class with the highest model confidence. 

The former can be useful for applications that need to know the most recent year a given change class 

was present, while the latter is useful for applications that need to know when a given change event 

peaked.  
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For example, in the following pixel, the time series of change model confidences, or probabilities, is: 

 

The most recent change years for this example are: 

• Slow loss: 2012 

• Fast loss: 2013 

• Gain: 2020 

The most probable change years are: 

• Slow loss: 2011 

• Fast loss: 2013 

• Gain: 2015 

Generally, the two summary methods differ most for long-term change processes such as gain and slow 

loss. 

Useful Resources 
 LCMS 

Homepage https://data.fs.usda.gov/geodata/rastergateway/LCMS 

Product Description Pilot Product Description 

Data Explorer https://apps.fs.usda.gov/lcms-viewer/ 

Data Download https://data.fs.usda.gov/geodata/rastergateway/LCMS/index.php 

Image Services https://apps.fs.usda.gov/fsgisx01/rest/services/RDW_LandscapeAndWildlife 

Contact sm.fs.lcms@usda.gov 

 

 

 

https://data.fs.usda.gov/geodata/rastergateway/LCMS
https://data.fs.usda.gov/geodata/LCMS/LCMS_R4_v2019-04_Descriptions.html
https://apps.fs.usda.gov/lcms-viewer/
https://data.fs.usda.gov/geodata/rastergateway/LCMS/index.php
https://apps.fs.usda.gov/fsgisx01/rest/services/RDW_LandscapeAndWildlife
mailto:sm.fs.lcms@usda.gov
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